
Chapter 3 – Classes

Answers

1. A

A static variable is part of a class itself, and not part of a specific

object of the class as instance variables are. Therefore for a class

that contains a static variable, there is one of these variable,

regardless of the number of objects created from the class. And

every time this variable is changed, no matter how it is changed, the

others who access it see the updated value.

In this example the static variable is called “sum”. Static variables

can be accessed by creating an object of the class, and then by

accessing the variable through the object, such as in lines 9, 11, 13

and 14. The more common way to access a static variable though is

by the class name directly, without creating an instance of the class,

as is done in line 7. And in line 12 the static variable “sum” is

increased directly. This is allowed here since the static method

“main” is part of the class that holds the static variable “sum”, so it

has direct access to it. In this example the static variable “sum” is

increased 5 times and decreased 1 time, so the result is 24.

2. A

Classes can contain one or more static initializer blocks, which looks

like a method but only has the word “static” and curly braces with

statements in them. The statements in here are used to set initial

values for static variables in the class. When the class is loaded,

these blocks of code are each called once, in the order that they

appear. Only after that is the “main” method called.

In this example there are 2 static blocks, one increases the value of

x to 60, and the second divides it by 15, making the value of x to be

4, the answer. The “main” is called and prints out the 4.

3. A

The method “verMethod” is called passing a char variable as a

parameter. Since there are no versions of this method that accept a

char, the compiler sees that since a char can be implicitly converted

to an int, it will use that version of the method. So the text “int

version” is printed.

4. A

Both object references and primitive types can be converted to other

types when they are passed to methods or are assigned to a new

variable of a different type. This conversion occurs automatically by

the compiler if it is allowed. Or, if it is not allowed, the programmer

can cast the value to be of the new type so that the compiler will

accept it.

5. A

Both object references and primitive types can be converted to other

types or cast to other types as needed. Some conversions are done

automatically by the compiler, and therefore a cast is not needed.

With primitive values, if the type is converted to a larger type, then

automatic conversion occurs. If the type is to be converted to a

smaller type, then a cast is required. For objects the rules are more

complex, but in general, subclasses can be converted to object

types of their super class automatically, but the other direction would

require a cast.

6. A,F

For A, line 9 will not compile since a Float is a subclass of Object, so

a cast to a float would be needed to fix this line “floty = (Float)obj;”

And for F, line 5 will not compile since all of the constructor’s for the

class float require that a value be passed to them.

B is fine, since in line 8 an array is being put into a variable of type

Object, and this is valid. C is fine since a Float object is being

constructed properly. D is fine since an array of Strings is being

created properly. And E is not true since the code will not compile,

as mentioned above.

7. A,D

A is fine since when passing an int to a method that can take a float,

the int will automatically be converted to a float and then passed to

the method. D is fine since it is passing 2 int values, and there is a

constructor that accepts 2 int values. The others are all not OK since

there are no constructors for the method that accept the number and

types of values passed.

8. B,C,D

When overloading a method, the new methods must have different

arguments. This can be either a different number or type of

arguments, or a different order of the types of arguments. The return

value does not matter in overloading.

B, C and D are all proper overloading methods, since their argument

list is different than the original method. A and E are really the same

method as the original, and there cannot be 2 of the same methods

in a class, so these are not legal.

9. A,D

Source files may have many different classes written in them, but

they can only contain one class that is declared as public. The name

of the file itself needs to be the same name as this public class.

10. B,C

When overloading a method, the new methods must have different

arguments. This can be either a different number or type of

arguments, or a different order of the types of arguments. The return

value does not matter in overloading.

In this example both B and C have different argument lists, so they

are valid for overloading. A, D and E are not valid since the

argument list is the same as the original method. For A, the return

value is different, but this is not a difference that matters in

overloading.

11. D

There are many ways to try to encourage the garbage collector to

clean up memory, but none of them can be 100% guaranteed.

12. A

In this example a new object called Zombit is created, and it has an

instance variable called “val” that has its value set by passing it to

the constructor. Here “val” it is set to 12. The method “jump” then

increased the value of this instance variable “val “by 2, to make it

14, which is the answer printed.

13. A

In this example a new object called “Harmony” is created, and it has

an instance variable called “held”, that is set to the value of 1 in line

6. On line 7 the method “jump” is called, passing a copy of the

reference to the Harmony object, which happens to be the same

Harmony object that we had previously created. The method “jump”

increases the “held” value by 1. Since the same Harmony object

reference was passed, that “held” instance variable was changed to

2, so that is the value that is printed.

14. E

In this example a new object called “Harmony” is created, and it has

an instance variable called “held”, that is set to the value of 1 in line

6. On line 7 the method “jump” is called, passing the value of the

variable “held” (an int) to the method “jump”. In this case the method

“jump” accepts the int and treats it as a local variable, having no

connection at all to the object’s instance variable “held”. Therefore

when the value of “held” is printed, it is still 1, and has not been

changed.

15. A

 compilation error will occur on line 5 since a float number 24.2 is

trying to be put into an int variable. This could result in a loss of

precision, so the compiler would require a cast to an int on this

number to make it a legal statement. The same type of error would

occur below in the class Car on line 3.

16. A

An object of type Object is a super class to an object of type Float.

Therefore a Float object can implicitly be converted into an Object

type of object, but converting the other way won’t work. The object

“o” would need an explicit cast to type “Float” in order for this to

compile.

17. C,D

C and D each call one of the constructors available for class

“Question”. A, B and E do not call one of the available constructors

for the class. A is not valid since when at least one constructor is

written for a class, there is no default (no argument) constructor

created for that class.

18. B

The java.lang.Math class cannot be subclassed since the class has

a final modifier.

19. B

An object cannot be created out of the java.lang.Math class since its

constructor is private.

20. None

It is true that initializing the variable will solve part of the compilation

problem, since local variables do not get assigned default values

like class level variables do. Therefore in this case if the “if”

statement returned false, the value in the local variable “result” will

have never been assigned a value, and the value in “result” is

always returned at the end of this method. The compiler sees this as

a potential problem and does not allow the code to be compiled due

to this.

The other problem here is that on line 5 a float variable, “number” is

being assigned to an int variable “result”, and the compiler requires

an explicit cast here since a loss in precision could occur in the

conversion process.

21. A

The native modifier can only be used with methods, and allows the

program to use a method written in a language other than Java.

22. A

When using the keyword “this” or “super” inside a constructor, it

must be the first statement in the constructor.

23. A,B,C,D,E

There are a number of different types of collections in the Java

language, and each of them implements the “Collection” interface. A

simple collection has few restrictions, among them that the order

does not matter and that they can hold duplicates. A list is a type of

collection that is ordered, a set is a type of collection that does not

allow for duplicates and a map is a type of collection that supports

searching on key fields.

24. A

Instance variables are variables on a class level, and these all

automatically get default values placed into them if they are not

initialized. Local variables are variables within a method, and these

variables all need to be initialized some way, or else the code will

not compile.

25. E

The variable x is a local variable and therefore needs to be

initialized in order for the code to compile. If the “if” statement

returns true then x is initialized, but if it returns false, x was never set

to a value.

26. A,B,C

A collection does not have a special order and allows for duplicates.

A set has no special order, and does not allow for duplicates.

A list has a special order and allows for duplicates.

27. A

The class “Try” has a static variable called “sum”, which by default

has the value of 0. On line 7 this value is increased by 1 by

accessing this value through the class itself, and not with an

instance of the class. On line 9 this value is increased by 1 again,

raising it to 2. Here the variable is accessed through an instance of

the class.

On lines 11 and 12 this value in the variable sum is decreased each

time by 1, bringing it back down to 0. Here again the variable is

accessed through an instance of the class.

Since the variable “sum” is a static variable of the class “Try” there is

only 1 copy of it, so all of these lines accessed the same copy of

“sum”.

28. A

When there are static blocks in a class they are all run in order when

the first object of the class is created. Their purpose is to initialize

the static variables of the class. In this class the only static variable

is “x”.

So first on line 6 x is increased by 20, so since x started out at 0 it

now holds the value of 20. Then on line 14 the value of x is divided

by 16, and the result is 1, since it is cut to an int.

Then the “main” method runs and prints out this x value, which is 1.

29. B

There is no way to totally force the garbage collection (memory

release) in Java.

30. B

When using the keyword “this” or “super” inside a constructor, it

must be the first statement in the constructor.

31. D

In the “main” method in this example a new Zombit object is created,

and the reference to this object is put into the variable “z”. The

Zombit constructor accepts an int value, which is 12 passed here,

and assigns it to the instance variable called “result”.

Then the “jump” method of Zombit is called, passing the value in the

instance variable called “value”, which holds the value 0 since it was

never assigned a value. This method causes the instance variable

“value” of this instance to increase its value by the number passed.

Since the original number was 0 and the number passed was 0, this

value remains as 0. Then the this value in the “value” variable of the

instance is printed to the screen.

32. C, D, E

Answers C and D are correct since they pass 1 or 2 ints, and there

are constructors that accept 1 or 2 ints as parameters. Answer E is

correct since a char value can be implicitly converted to an int value,

so the constructor that accepts 1 int value is used in this case.

Answers A and B are incorrect since there are no constructors

available to accept either no arguments or a floating point argument.

33. A

Line 3 will not compile since it is trying to convert a reference of type

object into a reference of type Float, and this is not valid since the

Float class is a sub class of the Object class.

34. B

More than one class can be defined in a single source file, but a

source file can only contain one class that has the access modifier

“public”. If a source file has a “public” class then the name of that file

needs to be the same name as the name of this.

35. B

In Java all variables are defined within classes.

36. D

This code does not compile since line 8 calls an empty constructor,

and the class does not provide one.

37. D,E

In the “main” method of this example 5 new “Pompa” objects are

created. In the constructor of the class “Pompa” the static variable

“count” is increased by 1, therefore after 5 “Pompa” objects are

created this “count” value is 5.

After this the variable “pompa5” that holds a reference to one of the

“Pompa” objects is set to null, which clears the reference in the

“pompa5” variable so now it does not hold a reference to any object.

When an object variable is set to null it is then available for the

Garbage Collector to clear the memory space that it is taking up.

Before the Garbage Collector cleans up the memory space it calls

the method “finalize()”. In this example the method “finalize()” is

overridden, and the new method reduces the value of the “count”

variable by 1.

It can never be known if the Garbage Collector will clean up the

memory right away or not. Therefore the next line of code that prints

this “count” value to the screen can be either 4 or 5. It would be 4 if

the Garbage Collector cleaned up the memory for this object right

away since the “finalize()” method would have been called in this

case. And it would be 5 if the Garbage Collector did not do its job

yet.

38. C

In the “main” method here an object of type Chompy is created and

its reference is put into the variable “first”. The constructor used is

the one that accepts an int value and another Chompy object. The

reference to this Chompy object passed is placed into the “next”

variable of the instance, and the int value passed is assigned to the

“id” value of the instance.

The new Chompy object that is created and has its reference placed

in the “next” variable, also has its own copy of the instance variable

called “id”. The number 102 that was passed is entered into here.

Then in “main” this “id” value of the object that “next” refers to is

printed, which is the 102.

39. F

In the “main” method of this example 4 Rectangle objects are

created, each having their own x and y int variable values, which are

passed as parameters to the Rectangle constructor.

Then a variable of type double called “sum” is created. Then the

method “area” is called on each of the 4 Rectangle objects,

returning the area of the rectangle as a double value. Each of these

values are added to the “sum” variable value, to get to the value of

17.0. The answer is 17.0 and not 17 since this value is held in a

variable of type double.

40. E

This code does not compile since both of the constructors for the

class “Plomba” are declared as “private”, and the “main” method

tries to create instances of this class.

41. D

This code does not compile since the “main” method, which is a

static method, is trying to access the non-static instance variable

“num”, and this is not legal. A static method can only have direct

access to static variables.

42. C

In the main method 2 Rublika objects are created, and their

references are placed into the variables “first” and “second”. Then

the “connect” method is called on “first” passing “second” as a

parameter. This method sets a reference of the object in “second” to

be placed into the instance variable “sun” for the object held by

“first”.

Then in main a variable called “sum” is created and it is set to hold

the sum of the return values of the method “getArea” on “first” and

“second”. When “getArea” is called on “first”, it sees that “sun” is not

null, so it first calls “getArea” on the object referred to in “sun”, which

is the same object referred to by “second”. This call to “getArea”

returns 20 (5 x 4). This is then added to the width x height of “first”

which is 200 (20 x 10). The resulting sum of these 2 is 220. This

sum is then added to a “getArea” call on “second”, which returns 20.

So the total sum to print is 240.

43. A

Tracking the code gives that 'duba1.isOk() && !duba1.isAllOk()'

boolean expression is true.

44. A

This code does not compile since the class “Tropy” has the access

modifier “private” and this is not allowed for a regular class.

45. A

In this example a new Gorky object is created, and its instance

variable “theNumber” is set to a value of –5. Then the method

“moveTheNumber” is called on the Gorky object, passing the value

32. The code in the method “moveTheNumber” does not actually

change the value of the “theNumber” variable, so when this variable

is printed, its value is still –5.

46. A

In this example 2 objects of type BitMove are created and their

references are placed into the variables “bitMove1” and “bitMove2”.

When each of these objects is created the constructor is passed the

value of 1, and this number is placed into the “num” instance

variable for each of the 2 objects.

Then the “moveTheBits” method is called on “bitMove1”, passing

one value, a 64. This uses the version of the method that accepts

one int value, and performs a << operation on the value in “num”.

The following is performed: 1<<64, which results in 1. For efficiency

reasons, when using a bitwise operator (e.g. <<, >> or >>>) it first

calculates the residual received when dividing the required number

of steps (the right operand) by the number of bits required to

represent the value on which the bitwise shift should work (the left

operand). In our case it is 32 (each int value is represented using 32

bits). For that reason, shifting left/right an int value 64 steps is the

same as shifting it 32 or 96 or even 0 steps.

Then the “moveTheBits” method is called on “bitMove2”, passing

two values, 1 and 32. This uses the version of the method that

accepts two int values, and also performs a << operation on the

value in “num”. But here this operation occurs within a loop, and the

number of times it occurs is the second value passed to the method,

which is 32 here. The value after the << is the value of the first

argument passed to the method. So the operation “num<<1” occurs

32 times, which results in 0.

47. A

In the Java language, all variables that are passed to methods are

passed by value, both primitives and objects.

For primitives, for example, if an int value of 7 is passed to a

method, the method contains a totally separate variable than the

original variable, but both variables contain the value of 7. If the

local variable within the method changes the value of the variable to

a different number, this has no effect on the original variable’s value

that was outside the method.

With objects, the reference to the same object is passed to a

method. Therefore the object variable outside the method and the

one inside the method both point to the same object. Due to this, if

any properties of the object are changed within the method, this

affects the object that the variable outside the method points to as

well, since they both point to the same object.

48. C

In this example there is a static variable called “sum”, which is of

type int. The initial value of this variable is 20. On line 7 the value of

“sum” is increased by 1, making it 21. This is done by accessing the

variable through its class name, and not through an instance of the

class, which can be done for static variables and not for instance

variables. On line 8 the value of “sum” is increased by 1 again to

make it 22. This time the variable “sum” is accessed through an

instance of the class.

On line 11 the value in “sum” is decreased by 1, making it 21. Again

this is done by accessing “sum” from another instance of a class.

And on line 12 the value of sum is decreased by 1 again, making it

20. This time “sum” is accessed through the class name again.

On line 12 the value of “sum” is printed, and it is now 20.

There is only 1 copy of a static variable that is connected to its

class. All objects created from the class access the same static

variable. And as seen above, static variables can be accessed

through the class itself or through instances of the class. They all

affect the same variable.

49. E

This code will not compile since it is trying to create instances of the

Plomba class on lines 14 and 15, and the two constructors of this

class are marked as private.

50. A

In this example a new instance of a Zomba object is created, a local

variable called “number” is given the value of 99. This variable

value is then passed to the “jump” method, but the value passed is

used in the method only, and has no effect on anything outside of

the method. After this the value in the “number” variable is printed,

and it still contains the number 99.

51. D

Answer D is correct since it is passing an int value, and there is a

constructor to accept an int.

Answer A is not correct since there is no no-argument constructor

available.

Answer B will not work since although it is passing a floating point

value, by default floating point values are of type double, and there

is no constructor that accepts a double. The value passed would

need to be cast to a float in order for this to work.

Answers C and E are not correct since there are no constructors

available that accept these values.

52. D

This example defines a class called Zombit, which has a static

variable called bomba that has an initial value of 0.

In the “main” method 3 new Zombit objects are created, each one

passing an int value to the Zombit constructor. The constructor

increases the value in bomba by the number passed in the

constructor. On this case the numbers 2, 3 and 2 were passed to

create the 3 objects, so the bomba value is increased to 7 (0 + 2 +

3 + 2 = 7). This value is then printed.

53. B

This example defines a class called Plomba, which has an instance

variable called “id” of type int. In the “main” method 2 Plomba

objects are created. One uses the no argument constructor, which

sets the “id” value to be 0 for that object. The other uses the

constructor that accepts an int value, passing a 72, and that value is

placed into the “id” variable for that object. Then the “id” values for

the 2 objects are added together, and their sum is printed. The sum

od 0 + 72 = 72.

54. C

This example defines a class called Zombit, which has an instance

variable called “value”. In the “main” method a Zomba object is

created, and the value 1 is passed to its constructor. The constructor

then assigns this value to the variable “value” for the object.

Next the “jump” method is called on the Zombit object created,

passing in the number 2. In this method, the value of the “value”

variable for this object is increased by 2, making it 3.

Back in the “main” method, the value of the “value” variable for the

object is then printed, printing the number 3.

55. D

Both of the constructors available here accept one number, one

accepts a float and one accepts an int. Answer D passes one int

parameter to the constructor, so this is valid.

Answer A passes no parameters to the constructor, and since there

are no constructors written that accept 0 parameters this answer is

not valid. Answers B and C are not valid since they pass more than

1 number in the parameter list, and there are no constructors that

accept this. And answer E is not valid since it passes a String as a

parameter, and there are no constructors that accept a String.

56. D

In this example the class defines a static int called “bomba’ that

starts out with a default value of 0. Then 3 “Zombit” objects are

created, each one passing an int value to the constructor. The

constructor adds each of the values passed to the variable “bomba”

resulting in a total sum of 37. This value is then printed.

57. B

In this example two “Plomba” objects are created. Each Plomba

object has its own instance variable called “id”, which is an int, and

which is initialized by default to 0. The first object created calls the

no argument constructor of the class, which sets the “id” value for

this object to be 8. The second object created passes an int value,

so it uses the constructor that accepts an int value and places this

value into the “id” variable of the object. The value passed here is

72. The sum of these 2 values, 80, is then printed.

58. E

In this example a new Zombit object is created, and it contains the

instance variable “value” with an initial value of 8. When the “jump”

method is called, the local variable in the method is increased by 1,

but this has no effect on the value in the variable called “value”.

Then the value of the “value” variable is printed, and it still has its

original value of 8.

59. A, D

Answer A is valid since it calls a no argument constructor, and there

is one available. Answer D is valid since it is passing a char value,

which can implicitly be converted to any numeric number that is at

least the size of an int, so the constructor that accepts a double

value is called.

Answers B, C and E are not valid since there are no constructors

available to accept the type and number of the parameters passed.

60. E

In this example the constructor of the class “Zombit” is private, but

since it is only accessed from the same class there is no compilation

error. The class contains a static int variable called “bomba”, which

has an intial value of 1. Each time a new Zombit object is created

the constructor receives an int value as a parameter. The

constructor takes the value passed and multiplies it with the current

value in the “bomba” variable, and the result is the new value in

“bomba”. So here 3 objects are created, passing a 2, a 3 and then a

2, which results in the number 12. This number is then printed.

61. D,E

Answer D passes 2 int values to the constructor and Answer E

passes 1 int value to the constructor, and since there are

constructors defined to accept 1 and 2 int values these answers are

valid. Answers A, B and C are not valid since there are no

constructors available to accept the number and types of

parameters passed.

62. A

This example has a class called Try, with a static variable of type in

called “sum” that has an initial value of 20. In the main method, this

value in “sum” is increased and decreased a number of times,

accessing this variable in a few different ways. The variable is

accessed directly though the class name, such as in “Try.sum++”,

and though an object that is created, for example in the line

“t2.sum++”. Each time the value of sum is changed, whichever way

it is changed, the same variable “sum” is accessed. In the end of

main the value of “sum” is decreased by 1 and then printed, and it

then has the value of 19. In this last case, the variable “sum” is

accessed directly, since the “main” that is accessing it is in the same

class that the “sum” variable is defined in.

63. E

This code will not compile since both of the constructors of the class

“Plumba” are “private”, so they cannot be accessed out of the class,

so no objects can be created from this class.

64. D,E

Answers A, B and C are not valid since there are no constructors

available to accept the number and types of parameters sent.

Answer D is acceptable and uses the constructor that accepts 3 int

values. The first value passed here is a double that is cast to a

short. Passing a short value is valid here since a short can implicitly

be converted to an int.

Answer E is valid since it passes 1 int value, and there is a

constructor that accepts one int value as a parameter.

65. A,C,D

A constructor always has the same name as the class that it is in,

and it never has a return value. Every class must have at least one

constructor. If there was no constructor written for a class, then the

compiler provides a default no argument constructor for the class. If

at least one constructor is written for a class then no default

constructor is created for that class.

A constructor can be private, which means that it cannot be

accessed, so that class cannot be instantiated. Usually this is done

when a class’ main use is to have a bunch of static variables and

methods to be accessed.

66. B

On line 6 a new instance of the “Test” object is created and its

reference is placed in a variable called “test”. On line 7 the “num”

instance variable of the object is set to have the value of 100. On

line 8 the “jump” method of the object that “test” refers to is called,

and it is passing a copy of the reference to this same object.

In the “jump” method the “num” value of the object that the reference

passed refers to is added to the “num” value of the current object.

Since they both refer to the same object, the value is increased to

200. Then back in the “main” method the “num” value of the object

reference in the variable “test” is printed, which is 200.

67. B,D

A normal class can have the access modifiers public or friendly (not

really an access modifier), and cannot have the access modifiers

private or protected.

68. A,B,C,D

Constructors and methods can have any one of these access

modifiers.

69. A

In this class called “Demo” there is no explicit constructor, so the

default constructor is called, which does nothing. Note that there is

the method “public void Demo()”, which looks like a constructor at

first glance, but it has the return value of void, and constructors have

no return value. In this example, the method Demo() never gets

called, so the value of the variable “magicNum” retains its default

value of 0.

70. A

In the “main” method a new instance of the class “Demo” is created.

Then the instance variable “number” of the class “Demo” is printed

to the screen. The value of the variable “number” within “main” is a

different variable than the one in Demo, and is not the one that is

printed.

71. D

The variable “number” is declared and defined a few times in this

program. This is confusing and not a great way to program, but it is

legal and works. In the “main” method an instance of the Demo

class is created, and then its “getNumber()” method is called. The

“getNumber()” method has its own local variable “number” and that

is the value that is returned (15) and then printed to the screen.

72. C

This code does not compile since the variable “m” was never

initialized. The line “Math m” is a reference of class Math, but if this

line tried to make an instance of the class Math as well, that line

would not compile, since the class Math has a private constructor so

an instance of that class cannot be made.

73. A

If a method accepts an Object as a parameter, then what it is

actually receiving is a copy of the reference that points to the

original object. So then there are 2 references pointing to the same

object. If the method changes a value in the object itself, then since

there is only one object, the change remains. If within the method

the reference to the object is reassigned to point to a different

object, then the reference outside of the method still points to the old

object.

74. A

There may be one or more static blocks within a class, and each of

them is called in order the first time the class is loaded. These

blocks are used to initialize any static variables in the class.

75. A

A final variable is a constant in Java. This means that once a value

is set for it, that value can never be changed. This value can be set

when the variable is declared, or later on, as long as it is assigned a

value before it is used.

76. A

All of these are correct statements.

77. A

A class must implement the Cloneable interface in order for objects

of this class to have to the ability to be cloned. If the class does not

implement this interface, and an attempt is made to clone an object

of this class, a CloneNotSupportedException will be thrown.

78. A

When a shallow clone is performed, the primitive variables in the

new object receive the same values as those variables in the old

object contained. The object reference variables in the new object

contain a copy of the reference to the same objects referred to by

these variables in the old object. Therefore the object reference

variables in the 2 objects contain references to the same objects.

79. A

Car implementation of the Cloneable interface doesn't create new

objects for each one of the objects a Car object holds. For that

reason, changing the owner name using car2 variable effects both

Car objects.

