
Chapter 6 – Inner Classes

Answers

1. A,E
Answer A is correct since if an inner class is not a static class then one
way to create an instance of that class is to first create an instance of the
outer class, and then create an instance of the inner class, based on the
outer class. If an inner class is a static class, then its outer class object
does not need to be created in order to access it.

Answer E is correct, since an inner class can be declared static.

Answers B and C are incorrect since an inner class can be defined as
anonymous or can be declared private, but they don’t have to be either.

Answer D is incorrect since an inner class created within a method cannot
access instance variables that are in its enclosing method. It can though
access final variables within its enclosing method.

2. A

 An instance of an inner class cannot exist without its outer class. In this
line of code “new Outer().new Inner()” one reference is created, that holds
an object of the inner class called “Inner”.

3. A,B,C,D

 Answers A and B are correct since an inner class (unless static), even
within a method, can always access instance variables of its outer class.

Answer C is correct since this variable var3 is a final variable passed into
the enclosing method, and inner classes created within methods can
access the final variables of their enclosing methods.

 Answer D is correct since the variable var5 is directly passed into this
 method of the inner class, so for sure it is available here.

Answer E is incorrect since the variable var4 is an instance variable of the
method that the inner class is created in, and as a rule an inner classes
created within a method cannot access instance variables of its enclosing
method unless they are final.

4. B

In this example on line 5 an anonymous inner class is created that
implements the interface “BambaInterface”. But a compilation error occurs
on this line since when implementing an interface arguments cannot be
passed, and here the parameter “3.4” is being passed.

5. B

An anonymous inner class does not have a name, so no constructor can
be defined for it. An anonymous inner class is created within a method by
using the keyword “new”, and then referring to a class that the anonymous
class is subclasses (or to an interface that the anonymous class is
implements.) During this line of creation it can pass parameters to the
constructor of its super class, but it cannot redefine a constructor.

6. A

An inner class can be declared as abstract like any regular class can be.

7. B
By definition an inner class either extends another class or implements an
interface.

8. A

 The JVM does not distinguish between an inner class and a regular class.
When compilation occurs, a file is created for each inner class the same
way a file is created for each regular class. The naming convention for this
inner class file is different though. The name contains the name of the
outer class, then a $ sign, then the name of the inner class. For example:
“Outer$Inner.class”

9. A

 An instance of an inner class can always access the instance variables of
its outer class, even the private ones. It is like the inner class is part of its
outer class.

10. B

 If an inner class is declared inside a method, and instance of the inner
class can only access final variables of the method, and not other instance
variables of the method. This is because when a method has finished
running its instance variables disappear, but the object that it created may
still be around, so that object cannot hold instance variable values that
may not exist anymore.

11. C

In the “main” method here a new inner class object is created and its
reference is placed into the variable called “popy”. The constructor of this
class sets the variable “luckyNumber” to hold the value of 65. Then the
“getLuckyNumber()” method is overridden just for this object, by placing it
between “{“ and “};”.

After this the method “getLuckyNumber()” is called on the “popy” object,
and the newly defined method is used. This overridden method multiplies
the value in the “luckyNumber” variable by 100 and returns this value,
which is 650.

12. A

In this example an instance of the outer class “Oliv” is created and its
reference is put into a variable called “oliv”. The constructor of this class
initializes the instance variable “luckyNumber” of this instance to hold the

value of 14. Then the method “setInner()” is called on “oliv”, which creates
an instance of an inner class of type “Oliv” and puts its reference into a
variable called “inner”.

After this, the “setLucky()” method is called using the “inner” variable, so
the version of this method used is the one defined for the inner class,
which is located in the “setInner()” method. This sets the variable
“luckyNumber” of the “inner” class to have the value of 12.

Then the value of the variable “luckyNumber” of the outer class “oliv” is
printed to the screen, which is 14. The creation of the inner class has
nothing in the end to do with this answer.

13. F

In the “main” method a reference to a new “Oliv” object is created and
placed into the variable “oliv”. It uses the constructor that accepts a
reference to a new “Oliv” object as a parameter, and places this reference
into the variable “inner” of the original object, who’s reference is held
in“oliv”.

This second “Oliv” object also uses the constructor that accepts a
reference to a new “Oliv” object, and again places this reference into the
variable “inner” of this second object.

The third “Oliv” object calls the constructor that accepts and int value, and
places this value (here 34) into the variable “luckyNumber” for this third
object. Since no “Oliv” object reference was passed for this third object to
be created, the “inner” variable holds a null value for this object.

The line: ”oliv.inner.iner.setInner()” calls the “setInner()” method on the
third object created. This third object is accessed by referring to the first
object “oliv” and then referring to its “Oliv” object reference placed in
“inner”, and then again referring to the “Oliv” object reference placed in the
“inner” variable of the second object. This “setInner()” method creates a
new “Oliv” object and places its reference into the “inner” variable of this
third innermost object. And then it overrides the method “setLucky” for this
third object.

This new “setLucky” method is called on this third “Oliv” object, and the
new “setLucky” version is used. The int value of 12 is passed to this
method, but it is irrelevant here, since here the “luckyNumber” is always
set to be 6, which is what is set for this third object.

 Then on the last line of “main” this “luckyNumber” variable value for the
third object is printed to the screen.

14. B

In the “main” method a reference to a new “Oliv” object is created and placed
into the variable “oliv”. It uses the constructor that accepts a reference to a
new “Oliv” object as a parameter, and places this reference into the variable

“inner” of the original object, who’s reference is held in“oliv”.

This second “Oliv” object also uses the constructor that accepts a
reference to a new “Oliv” object, and again places this reference into the
variable “inner” of this second object. Then the third “Oliv” object is
created the same way as the second.

The fourth “Oliv” object calls the constructor that accepts and int value,
and places this value (here 35) into the variable “luckyNumber” for this
fourth object. Since no “Oliv” object reference was passed for this fourth
object to be created, the “inner” variable holds a null value for this object.

Then the method “setInner” is called on the third “Oliv” object. This
method creates a new “Oliv” object and places its reference into the
”inner” variable for this third object, which replaces (overwrites) the
previous fourth “Oliv” object. This method also overrides the “setLucky”
method for this fourth object so that is takes the int argument passed and
places it into the “luckyNumber” variable. The next line calls the “setLucky”
method on this fourth object passing the number 12, so this new version
of the method is used.

Then the last line in this “main” method prints this “luckyNumber” value for
 the fourth “Oliv” object, which is 12.

15. A

In this example a String array containing 5 names is created, and then an array
of type “InnerParty” is created that can hold references to 5 objects. Then there
is a “for” loop to fill this “InnerParty” array.

The “for” loop creates 5 “InnerParty” objects and puts their references into the 5
spots in the “InnerParty” array. As each InnerParty object is created one of the
names in the String array is passed along with the current array index. The
constructor then sets the “name” variable for each of these objects to contain
the name value in the String that was passed to it.

Back in the for loop, for each array item the “doSomething()” method is
called, referring to the inner class (“inner”) of this “InnerParty” class. Both
the outer class “InnerParty” and the inner class “inner” contain a
“doSomething()” method, but here this method of the inner class is called.

This “doSomething()” method in the inner class takes the value in the “name”
variable of the outer class, adds the text “98” to the end of this name to create a
new String, and puts this new String value into the “name” variable of the inner
class.

Then the program calls the “getInner()” method on the reference to an
“InnerClass” object that resides in the number 1 spot in the “InnerParty” array.
This method returns the value in the “name” variable of the inner class, which
is “Haim98”.

